<u>Reactions with pyridine</u>. In the pyridine molecule there is only one nitrogen atom situated in the plane parallel to the CR'R"R''' plane and perpendicular to the ring (Fig. 2). Two "ortho"-hydrogens do not reach this plane (by $\backsim 0.2$ Å), and two "ortho"-carbons - by 0.7Å. A compression originates, in the reaction with methyl iodide, between nitrogen atom and three hydrogen atoms (1.85Å), between one H in CH₃I and an H atom in C₅H₅N (1.7Å instead of 2.4Å) and also between C atoms in C₃H₅N and H atoms in CH₃I. The sum of these compressions is equal to 6.7Å³, i.e. 4 cc/mol.; $\bigtriangleup v_{mol.}^{\neq} = -9$ cc/mol.

In the reaction with ethyl iodide, one compression N...H is changed into N...CH₃ (2.15Å instead of 3.6Å) and there arise interactions with "ortho"- carbons; $\Delta v_{mol.}^{\ddagger} = 14$ cc/mol.

The value $\Delta v_{mol.}$ does not change with further increase of the number of carbon atoms in the normal little chain of alkyl halide.

In the reaction with <u>iso</u>propyl iodide, there are two N...CH₃ compressions and the character of the interaction with "ortho"-carbons is somewhat changed, Δv mol. =-19 cc/mol.

Reactions with trimethylamine. Consider the reaction of trimethylamine with <u>iso</u>propyl iodide. The most preferable mutual disposition of the CR₃ plane and N(CH₃)₃ pyramide is represented by the scheme in Fig. 3a (along the C-I bond). In the activated complex originate the following compressions: compression N...H (1.85Å), two N...CH₃ compressions (2.6Å) and four CH₃...CH₃ compressions (2.7Å). The calculated value of $\Delta_{\mathcal{V}}^{\ddagger}$ mol. is equal to -24 cc/mol., i.e. larger than in the reaction of <u>iso</u>propy. iodide with pyridine. This value does not

** Including the compression in the formation of a C-N bond (see above).